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An analytical solution of a system of linearized equations for a gas-particle mixture 
is obtained for steady periodic motions. A finite volume fraction of particles and a 
continuous distribution of particle sizes are taken into consideration. It is shown that 
the effect of a continuous distribution of particle radii on the acoustic motions of a 
dusty gas is incorporated through only four integral quantities containing the 
relaxation times of the particle velocity and temperature, integrated over all particle 
sizes. This solution is applied to the problem of acoustic reflection, absorption, and 
transmission by a screen of dusty gas. 

1. Introduction 
When a small disturbance is incident upon a region where a gas and an appreciable 

amount of dust are present, reflection, absorption and transmission of the disturbance 
by the dusty gas will occur. Cutting off or shielding of acoustic waves by screens of 
a gas which contain much dust or many water droplets is a very important problem 
of both theoretical and practical interest. Recently, for example, at the lift-off of the 
U.S. Space Shuttle, a very strong water shower was used to suppress the strength 
of the ground-reflected waves produced by the exhaust jets. It was shown that this 
idea is quite effective in protecting the very weak wall structure of the Orbitor from 
possible fracture due to the air disturbances. 

Determining the coefficients of reflection, absorption and transmission of waves by 
a screen of dusty gas requires the complete solution of the flow and relaxation 
equations for the gas-particle mixture. The system of governing equations for a dusty 
gas is very similar to that for vibrationally or chemically relaxing gases. The effects 
of vibrational and chemical relaxations on the wave phenomena are well understood, 
particularly in the linear regime (Vincenti 1959; Clarke 1960). There are, however, a 
few important differences between the relaxation phenomena in a pure gas and those 
in a dusty gas. 

( a )  The velocities of the particles can be, in general, different from the gas velocity, 
leading to  distinct momentum equations for the gas and the particles that  are coupled 
with each other. This is not the case for relaxing dust-free gases. 

( b )  Each particle has a finite volume, which introduces many coupling terms into 
the conservation equations of mass, momentum, and energy for the gas and particles 
except one (the energy-conservation equation for a particle). 

(c )  I n  many practical cases, the size of the particles is not always uniform. It is 
often considered to  be a reasonably good approximation to assume that the particles 
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have a continuous size distribution, which then implies an infinitely large number 
of different relaxation times for the particles. 

These differences make it impossible for us to apply the previous solutions for 
relaxing dust-free gases directly to flows of gas-particle mixtures. 

In this paper, the governing equations for a dusty gas are derived, taking into 
account a finite volume fraction and a continuous size distribution of the particles. 
The system of linearized equations is then applied to a one-dimensional problem 
where a finite-width screen ofa uniform gas-particle mixture is present in a pure ideal 
gas and a specified wave is continually incident upon the gas-particle screen, as shown 
in figure 1.  An analytical solution is obtained to determine the coefficients of 
reflection, absorption and transmission of the wave by the screen of dusty gas. Sample 
calculations are carried out for the gas-particle mixture composed of air and solid 
alumina (A1,0,) particles. 

2. Assumptions 
The gas-particle mixture is taken to be in an equilibrium reference state without 

(i) particles are permanent; 
(ii) the viscous force acting on each particle obeys Stokes’ law; 
(iii) the heat-transfer rate to each particle is proportional to the temperature 

(iv) the ratio of the gas density to the material density of the particles is smaller 

(v) the gas is inviscid except for its interaction with the particles; 
(vi) the gas is a perfect gas with constant composition and constant specific heats; 
(vii) the thermal and Brownian motions of the particles are negligible; 
(viii) the particles do not interact with each other; 
(ix) the particles are solid or liquid spheres with a constant material density; 
(x) the particles have a constant specific heat and the internal temperature of the 

particles is uniform. 
These assumptions have been used in many previous papers (Takano & Adachi 1975; 
Rudinger 1970; Marble 1963 ; Carrier 1958). Here, however, the assumption of a single 
uniform diameter of particle sizes is not made. The assumption (iv) is quite reasonable 
in practice, and, as wilI be seen later, the ratio is important in determining the form 
of the general solution to the system. 

disturbances. The analysis will be based on the following assumptions : 

difference between the gas and the particle; 

than unity; 

3. The particle distribution function 

have radii rp  lying in the range rp  to rp + dr, is 
The distribution function $(x, t ,  r,) is defined such that the number of particles that 

np $(x, t ,  rp) dr, (1) 

per unit volume, where np is the number density of the particles, and x and t are the 
distance and the time respectively. With this definition 

np = Jnp$(x, t ,  rp) dr,, (2) 
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where the integration is taken over all sizes of particles contained in the flow, and 
it follows that the distribution function 4 satisfies 

s +(x, t ,  r,) dr, = 1.  (3) 

Also, the particle concentration up can be written as 

up = mPnP 4 dr,. s (4) 

Here m, is the mass of a particle and is given by 

mp = w; Pp, ( 5 )  

where p, is the material density of the particles. The volume fraction E of the particles 
is also obtained as 

(6) E = np J'fnriq5 dr,, 

from which the particle concentration up given by (4) can be rewritten in the form 

up = Ep,. (7)  

u = ( l - - E ) p ,  (8) 

By using t,he volurne ratio E ,  the gas concentration r~ is given by 

where p is the gas density. An average particle radius 1, is defined for later convenience 

#nlg npo = +nr; npo 40 dr,, J 
1; = sr;40drp> 

by 

or 

where the subscript zero denotes the equilibrium reference state. 

(9) 

4. The governing equations 

written using the distribution function q5 as follows: 
The governing equations for the one-dimensional flow of a gas-particle mixture are 

an a 
-+-(au) = 0, 
at ax 

u - + - + # n p , n , ~ ~ q 5 r ~ d r p  DU ap = 0, 
Dt ax 
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where 

and 
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h = -  RT = C,,T, 
Y-1 

~a a - Dt = t + u -  
ax’ 

In  these equations, u, p ,  T and h are the velocity, the pressure, the temperature and 
the specific enthalpy of the gas respectively. The roman subscript p denotes the 
quantities associated with the particles. The quantities R, C,,, y and C,, are the gas 
constant, the specific heat at constant pressure, the ratio of specific heats of the gas, 
and the specific heat of the particle material. 

In  (14) and (15), A ,  and B, are given by 

where ,u is the coefficient of viscosity of the gas and P, is the Prandtl number. The 
quantities fp and gp are defined by 

CD f* = 
cD Stokes ’ 

, (24) N u  
u Stokes 

9, = N 

where C, is the drag coefficient and Nu is Nusselt number, and the subscript Stokes 
denotes the values evaluated in Stokes’ theory, which are 

24 

R e ’  

2rp P b  - up1 

- 
cD Stokes - - 

N u  Stokes = 2 j  

Re = 
,u 

It is well known that, for very small Reynolds number Re 4 1 ,  

f ,  = 1 ,  (28 ) 

g, = 1 .  (29 ) 

For acoustic propagation in air, the induced motions of the gas and also the particles 
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are very small, which indicates that the Reynolds number Re given by (27) may be 
very small for small sizes of particles. Therefore, in this paper it is assumed that the 
approximations (28) and (29) are valid (assumption (iv) in 52). In  this case 

5. The system of linearized equations 

is convenient to introduce non-dimensional quantities as follows. 
Since the flow is treated as a perturbation from an equilibrium reference flow, it 

t X 

7 7af 0 

- = t', - = x', 

I - P = l+p' ,  - p = l+p',  
Po Po 

I T U 
- = l + + ,  -=u',  
T, a,, 

where T is a characteristic time to be specified later and a,, is the speed of sound of 
the frozen gas-particle mixture. It is well known that 

(35) P af" = y - .  
P 

Here it is important to notice that, under the assumptions (28) and (29), the 
non-dimensional quantities Ah and BL are functions of rh only to  the first approxi- 
mation, because the Prandtl number P, is usually well approximated as a constant, 
and the coefficient of gas viscosity ,u is, in many practical cases, a function only of 
the gas temperature. 

With these non-dimensional quantities, the basic equations (3), (6) and (9)-(16) are 
rearranged in conjunction with (8) and (17)-(20) to yield to the first approximation 

s&d(,  = 1,  (36) 
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p’ = p ’ + T ,  (44) 

(45 ) 

We have eight equations (40)-(47) for nine variables cp‘, q’, p’, u‘, p‘, T ,  n;, ub and 
Tk. Since n6 and $’ appear only in the form nb + cp’, this system is sufficient to solve 
for the seven variables and one pair nb+cp‘. It must be noticed that (39) is the 
normalizing condition for $’ and is used in order to  obtain the solutions cp’ and n;. 
When, for example, the system is solved to yield $’(x’, t’, rk) as a solution for nk + cp’, 

nb + cp’ = $’, 148) 

nk is first solved by 

(49) 

Then it is given that 

For the present purpose, however, it is not necessary to obtain the separate solutions 
p’ and n;. 

j(nk+cp’)$hdrk = nk = s$’(x’, t’, rk) drk. 

cp‘ = $‘- 5 $’$hdrb. 

6. The flow model and boundary conditions 
One-dimensional flow is considered. The flow region is divided into three parts, 

x < 0, 0 < x < L, and L < x as in figure 1. I n  the regions -a < x < 0 and 
L < x < co, the same dust-free gas is present in a uniform state. In  the region 
0 < x < L,  a uniform gas-particle mixture is present in an equilibrium state without 
disturbances. The gas density and temperature are the same in all regions in the 
reference state. 

I n  the present analysis, we prescribe a wave incident from negative infinity 
( x  = - co) described by 

(50) 
where w’ is a non-dimensional frequency, pi is a constant, C is a non-dimensional 

uf = Ci sin (w’t’-Fix’), 



Dust-free gas Gas + particles Dust-free gas 

I I 

0 L X 

* Reflected wave - 
Incident wave 

FIQURE 1. Flow model. 

- - Left-going wave % 

Transmitted wave 
Right-going wave 

amplitude, and the subscript i denotes the incident wave. The non-dimensional 
frequency w’ is defined by 

w’ = 7w = 1, (51) 

where w is a dimensional frequency, and here the characteristic time 7 introduced 
previously is defined as i 

From the acoustic theory for a classical ideal gas i t  is given that 

p. = 0’ = 1. (53)  

For steady-state reflection, absorption and transmission, it is sufficient to consider 
four induced waves in the flow field: a reflected wave in the region - 00 < x‘ < 0, 
right- and left-going waves in the region 0 < x’ < L‘, and a transmitted wave in the 
region L’ < x’, where L’ is the non-dimensional width of the gas-particle screen, 
defined by 

In general, the reflection and transmission are accompanied by phase changes. 

(55)  

(56) 

p r = p t = p i =  1 .  (57)  

Denoting them by 6, and S,, the reflected and transmitted waves can be written 

ui = C, sin (1’ + /3, x’ + a,), 
ui = C, sin (t’-Ptx’+6,). 

Obviously, in the present case we can put 

The problem is now reduced to determining the constants C,, C,, 6, and 6, for the 
specified incident wave (50). I n  order to do this, it is necessary to solve the system 
of flow equations in the region 0 < x’ < L’ (or 0 < x < L) ,  together with the boundary 
conditions 

(2’ = O ) ,  1 u’(t’, -0) = u’(t’, + O ) ,  
p’(t’, -0) = p’(t’, + O )  

(x’ = L’). (59) 
u’(t’, L’-0) = u’(t’, L+O), 
p’(t’, E -0 )  = p‘ft’, C+O) 

The solutions in the regions - GO < x’ < 0 and L‘ < x‘ < GO are well known in the 
classical theory, and are given by 

(-a < 5’ < O ) ,  (60) I u’=Cisin(t’-x‘)+C,sin(t’+~‘+6,), 
p‘ = y[Ci sin(t’-x’)-C, sin(t’+x’+S,)] 



266 R. Ishii and H .  Matsuhisa 

(L’ < x’ ,< oo), I u’ = C, sin(t’-x’+Q, 
p’ = yC, sin (t’ - x’ + 8,) 

and they will be used in conjunction with (58) and (59) to obtain the acoustic solutions 
for u’ and p’ in the gas-particle mixture. 

7. The solution in the gas-particle mixture 
Combining (42) and (43) yields 

( ~ + A p ) u p - ~ o ~ ~ $ o r ~ d r p  = ( 2 t  --+A, u. 

The primes will be omitted for simplicity except when this would lead to confusion. 
In  conjunction with (40)-(42) and (45), we can get, from (44) and (47), 

( $ + B P ) 2  = - B  1-E0) - - -  ,[Y( a2u a t 2  a2u1 a x 2  

(63) 
a t 2  i ax 

and also, from (43), 

- v O J g $ o r ; d r p  = 0. (64) 

Equations (62)-(64) constitute a set of equations for u, up and T,. Although these 
have integral terms with respect to r,, they are not integro-differential equations in 
the usual sense, because they do not contain any term with partial differentiation 
with respect to r,. This system, however, cannot be reduced to a system of pure 
differential equations. 

For the present purpose, i t  is sufficient to consider the solutions in the form 

u = Re (C(x )  eit), 

up = Re (Cp(x, r p )  eit), 

Tp = Re (F,(x, rp)eit), 

(65) 

(66) 

(67) 
where C, Cp and Fp are the functions of x and r,  (or x alone) to be determined, and 
Re ( ) designates the real part of ( ). For later convenience, some integral quantities 
are introduced by 

QPc4 = C,@, rp) ! $ o r p p >  (68) s 

It is easy to see that 
Ap2 = 1 -A,,, Bpz = 1 -Bpo. 
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The solution for u is obtained first. Substituting (65) and (66) into (62) yields after 
some manipulation 

I n  this equation, eP is not yet determined. Equation (71) is substituted into (68), 
yielding 

(72) 

where Cpl and CP, are now functions of d,, (k = 0 , 1 , 2 ) .  Equation (71) with (72) 
represents a complete relation between C and C,. Next, (65)-(67) are substituted for 
u, up and Tp into (63) to yield 

Cp = (Qpl + iCp2) C, 

where 
(74) 

Finally, by using (65)-(67) in conjunction with (71)-(73), we can get an ordinary 
differential equation for C ( x )  with respect to x in the form 

(a, - ia,) C,, + (a3 - ia,) C = 0, 

a3 = (1 -e0){(1 +yv8BP2)+v[(1 + y v ~ B ~ , ) C ~ ~ + y v e B ~ ~ ~ ~ ~ 1 } ,  

a, = (1 - ~ O ~ ~ ~ v ~ B p l + v ~ y v e ~ p l ~ p l - ~ ~  + r v ~ B p z ) ~ p z ~ } .  
If we put 

where C, is a constant, i t  follows from (75) that 

A2 = P+iQ, 
where 

C = CAe*,, 

Obviously P and Q are real constants. By introducing real constants a,  p by 

the relations 
h = a + i p ,  

."/I2 = P ,  20$ = Q 

are obtained. Since it can be shown that Q is positive (see appendix) so that  a, p have 
same sign, we get 

where a and /3 are defined as positive quantities and are given by 

h = +(a+iP) ,  (82) 

(83) (a,/3) = ( [ $ ( p + ( p + Q 2 ) ~ ) ] ~ ,  [$( -P+(P'+Qz)a)]i). 
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Redefining A as A = a + ip, previous discussions suggest a solution in the form 

(84) = c , eit+Ax +C-Aeit-hx, 

where C, and C-, are complex. Since C(x)eit is a solution for the system, then 
C*(x) ewit is also a solution for the system, where C*(z) is the complex conjugate of 
C(z). The general solution to the present system can then be written as 

u = [C, sin(t-/3x)+D+~os(t-/3x)]e-"~+[C_sin(t+px)+D- co~(t+,&)]e+~", (85)  

where C,, C-, D+, and D- are now real constants and the subscripts plus and 
minus denote waves propagating in the positive and negative directions respectively. 
These constants are to be determined from the boundary conditions (58)  and (59). 
The solution (85) indicates that the waves in the mixture will decrease in amplitude 
with propagation, since the parameter a is positive. 

Since the boundary conditions are given in terms of the gas velocity u and the 
pressure p ,  the solution for p is needed. Substituting (85)  for u into (62)-(64), we can 
get, after some manipulation, 

P = Y(~-~o){[(Kc,-MD,) ,.&2+p2 sin (t-px)+ (MC,+ KD,) cos ( t -px)]  e-ax 

- [(KC--MD-) sin (t +px)+ (MC-+ KD-) cos (t+@)]e+ux}, 
where (86) 

(87 1 
K = ( 1 + v ~ p , ) P - v 6 p 2 a ,  

M = (1 + vepl) a + v e p 2 p .  

8. Determination of the constants C,, C,, 8, and St 

When the boundary conditions (58)  and (59) are applied to the solutions (60), (61), 
(85) and (86), a total of eight algebraic equations are obtained for the eight unknowns 
C,, C,, S,, S,, C,, C-, D+ and D-. These are written as follows: 

c, + c- = ci + c, cos s,, 
D, + D- = C, sin a,, 

(88) 

(89) 

(C, cosflL+D, sin@L)e-"L+(C- cospL-D- sinflL)e+aL = C,cos(S,-L), (92) 

(--C+ sinpL+D+ cos,8L)e-"L+(C- sinPL+D- cospL)e+uL = C, sin(St-L), (93) 

1 -iZo 
{ [ (KC, - MD,) cos PL + (MC, + KD,) sin pL] ePaL a2+P2 

- [(KC- - MD-)  cos PL - (MC- + KD-) sin DL)] e+uL} = C, cos (8, - L), (94) 
1 --I50 

U 2  + p2 { [ ( M C ,  + KD,) cos PL - (KC, - MD,) sin PL] ePaL 

-[(KC--MD-) sinPL+(MC_+KD-) c0s/3L]e+"~} = C, sin (St-L). (95) 
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Although it is quite easy to solve these equations, the results are very lengthy and 
will not be given here. 

With the results for C+, C-, D, and D-, the solutions for up and Tp in the gas-par- 
ticle mixture are easily constructed. In the present analysis, however, we are mainly 
concerned with the reflection, absorption and transmission, so that the explicit results 
for up and Tp are not necessary. 

The coefficients of reflection, transmission and absorption of the gas-particle screen 
are given by 

(96) 
c; 
Cf'  

a =- 

respectively, where the subscript a denotes absorption. The last equation (98) was 
obtained from the conservation law for the acoustic energy. These three coefficients 
can be determined by using the solutions for (88)-(95) for the specified conditions 
of po, T,, $ o ,  npo and L (in the dimensional notation). 

9. Stability of the gas-particle screen 
The stability of the gas-particle screen against the acoustic disturbance is 

investigated. Eliminating C,, C,, 8, and 8, from (88)-(95), a system of equations is 
obtained : 

where 

and A is a matrix with elements A ,  (i, j = 1 ,2 ,3 ,4 ) ,  
M 
K 

All = -, A,, = - A l l ,  A 1 3  = ~ + l ,  A14 = K - 1 ,  

A21 = '22 = '23 = = 

K 

M 
A33 = [x cosPL+ ( K -  1 )  sinPL 

1 M 
sinPL , 
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Obviously, the resonance occurs only when 
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det A = 0 

After some manipulation, (102) becomes 

e-2aL sin2PL = 0, 

from which the resonance condition can be written as 

where 

Since [sin (2pL+d)l < 1, the right-hand side of (103)  must be less than or equal to  
unity for possible occurrence of the resonance. It is easy to see that the right-hand 
side of (103) is always greater than unity, which indicates that  the resonance can never 
occur and that the gas-particle screen is always stable with respect to the acoustic 
perturbation. 

10. Sample calculation 
For the numerical calculation, a gas-particle mixture composed of air and solid 

alumina (A1202) particles is considered. The alumina particles are produced, for 
example, in the combustion process in rocket motors with solid propellant. Here we 
return to the original primed notation for the variables defined in (31)-(33),  (51 )  and 
(54 ) .  The physical constants and the reference conditions are listed in table 1. 

Now, one remaining task is to specify the particle distribution function $o(rp). 
Practically, however, i t  is very difficult to specify it,  and, a t  least up to now, there 
have been few data for the size distribution of solid alumina particles. I n  the present 
analysis, therefore, we consider the function $o(rp) in the form 

$o(rp) = exp ( - E r g ) ,  (105) 

where E ,  d and e are properly specified constants, and the constant D is to be 
determined for the specified values of E ,  d and e from the normalizing condition (3).  
Here, we consider two sets of values: 

caae (a)  

D = 2.635 x m4, d = -5 .0,  E = 1.6 x 10-l2 m2, e = -2.0; 
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Physical constants 
Air A1203 

y = 1.4 

p = 1.79 x 

P, = 0.75 

pp = 4.0 x lo3 kg/m3 
G,, = 1005.0 J/kg K C,, = 1686.0 J/kg K 

kg/m s 
(for To = 288.0 K)  

Reference conditions 
T, = 288.0 K 
pa = 1.23 kg/m3 
a,, = 340.0 m/s 

TABLE 1 

case ( b )  
D = 0.2857 x lo6 m-l, d = 0, E = 0, e = 0;  

where it is assumed that the minimum and the maximum particle radii rpmin and 
rpmax of the particles contained in the mixture are specified as 

rpmin = 0.5 pm, rpmax = 4.0 pm. 

According to  the present specification of rpmin and rpmax given above, we can put 

for all the integrations over particle radii in the system, where rbmin and r ~ , , ,  are 
rpmin/lp and rpmax/Zp respectively. The average particle radii 1, defined by (9) are 

1.363 pm for case (a )  
& =  { 2.615 p m  for case ( b ) .  

Case (a) was determined from the experimental data of Kliegel(l963) by curve fitting. 
Case ( b )  is only a fictitious uniform distribution, and is considered here in order to 
investigate the effect of the form of $o(rp) on the wave phenomena in the mixture 
by comparing the results for cases (a)  and (0 ) .  Figure 2 shows $o(rp) for these two 
cases. 

The numerical results of the coefficients of transmission, absorption and reflection 
are plotted respectively in figures 3, 4 and 5 against the width L‘ (or L)  of the 
gas-particle screen. These results are for v = 1 and f = 1000 s-l, where f is the 
frequency of the incident wave and is related to the characteristic time r by 

Appreciable differences between the results for cases ( a )  and ( 6 )  are well seen in these 
figures. This indicates the importance of detailed knowledge of the structure of 
in the analysis of acoustic response of the gas-particle screen. These figures also 
suggest that  the gas-particle screen is relatively far more effective for the absorption 
than for the reflection of acoustic disturbances. The effect of the geometry of 
gas-particle screen appears most strongly on the coefficient of reflection a,. The 
difference between the results for cases ( a )  and ( b )  is very prominent for a,. This 
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1.5- 

1.0- 

0.5 

0 

Case (a),  lP = 1.353 pm 

rpmm = 0.5 pm 
rpmax = 4.0 pm 

- 

I Case ( b ) ,  I, = 2.61 5 pm 

I I 
1 .O 2.0 3.0 4.0 

1 . o r  

0.8 A u =  1.0 
f =  1000 s-’ 

L’(L = 0.0108 X L‘m) 

FIQURE 3. Coefficient of transmission. 

geometric effect of the gas-particle screen is naturally reflected in the coefficients of 
transmission and absorption, but its contribution to these coefficients is very small. 

It would be a very interesting and important problem to find an equivalent or best-fit 
single-size-particle dusty-gas mixture that gives good approximations to  the 
coefficients of transmission, absorption and reflection of the corresponding gas-particle 
mixture with the actual size distribution qho(rp). Since the present analytical result 
remains valid for the mixture with a single size of particles by putting 
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w =  1.0 
f =  1000 s-1 "'41 A -  / singlesize approximation 

L' ( L  = 0.01 08 X L' m) 

FIGURE 4. Coefficient of absorption. 

v =  1.0 
f =  1000s-' 

single-size approximation -- - 

0 2.0 4.0 6.0 8.0 10.0 
L' ( L  = 0.0108 XL' m) 

FIGURE 5. Coefficient of reflection. 

where 6 is the Dirac's delta-function, the problem is equivalent to finding a particle 
size rp that satisfies the four equations 

- - 
A;, B'" 

- A,,, 2 = B,, (k = 0, l ) ,  m- B;+ 1 

where Apk and I?,, are defined by (69), and A: and B, are A; and B; evaluated for 
rp = F,, Obviously it is impossible mathematically to find such a F,. Hence, therefore, 
a plausible single-size approximation is proposed by taking 

P ,  = l , ,  

where lp is defined by (9) and its value has been obtained previously for each case 
of size distribution. 
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10- 

8- 
f =  1000 s-1 

single-size approximation 

6 -  

4- 

2- 

0 
10-1 1 10 103 I 04 

v 

FIGURE 6. Parameter a. 

FIGURE 7 .  Speed of sound in the mixture. 

The results for $o(rp) = b'(rp-Zp) are shown in figures 3-5. It is reasonable to expect 
that  the accuracy of this single-size approximation depends on the form of the 
corresponding actual distribution function g50( rp), I n  the present calculation, the 
single-size results for case ( a )  give relatively better approximations than those for case 
( b ) .  The reason can be seen clearly from figure 2. In  case (a) ,  the majority of particles 
are distributed in the radius range near the corresponding average particle radius I , .  
For both cases, however, the present single-size approximation gives very poor results 
for the coefficient of reflection a,, as shown in figure 5 .  

The accuracy of the single-size approximation proposed here can also be investigated 
by comparing the parameters a and /3, which are defined by (83). The former concerns 
the absorption of the disturbance, and the latter represents the inverse velocity of 
sound in the mixture. These are plotted against the loading ratio v in figures 6 and 
7 .  The present single-size approximation seems to give a relatively poorer result for 
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FIGURE 8. Coefficient of transmission for a single size of particles. 

p (or 1/p) than for a. These figures also indicate, as has been suggested previously, 
that the form of the distribution function q50(r,) has a very strong effect on the 
parameters a and p. In figures 6 and 7, af and a; are the sound velocities 
non-dimensionalized by afo in the mixture in the frozen and equilibrium limits 
respectively. The parameters a in these two limiting cases are both zero, which means 
that, in these limiting cases, the absorption of the disturbance by the gas-particle 
mixture does not occur. This result coincides with the situation in the vibrationally 
or chemically relaxing gases. 

The effect of the particle volume ratio co appears, especially in figure 6, for u > 100.  
The decreasing tendency in a for v > 1000 clearly demonstrates the effect of eo. 

It is very important to investigate the particle-size effect on the acoustic response 
of the gas-particle screen, because the sensitivity of the coefficients at, a,, and a, to 
the particle distribution function q50(rp) seems to come from the significant differences 
between the acoustic responses of different sizes of particles contained in the mixture. 
Then the coefficients at, a, and a, for gas-particle mixtures with only a single size 
of particles, #o(rp) = S(r, - pP), have been calculated. The results for F ,  = 0.1, 1 .O and 
10.0 pm are shown in figures 8 , 9  and 10. It will be very easy to see that there is very 
strong dependence of the acoustic response of the gas-particle screen on the particle 
sizes. Especially, i t  is very important to realize that for a specified frequency of the 
incident wave, there is some range of particle radii for which the absorption coefficient 
becomes maximum. For the present conditions, v = 1 and f = 1000 s-l, the most 
effective particle sizes are r p  = O( 1 pm). For the acoustic reflection, the smaller sizes 
of particles are, in general, more effective than the larger sizes of particles. This 
situation is seen clearly in figures 5 and 10. 

Finally, i t  will be worthwhile to point out the similarity of the present solution 
for the gas-particle mixture with only a single size of particles. Since A ,  and B, are 
proportional to rp2, and 7 is proportional to f l ,  we have 
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FIGURE 9. Coefficient of absorption for a single size of particles. 

0.06r 
u =  1.0, f =  1000 s-’ 
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FIGURE 10. Coefficient of reflection for a single size of particles. 

Then the present solution is similar for the cases 

frg = const. 

This is, however, not the case for the mixture with a continuous size distribution. 

1 1. Conclusions 
An acoustic solution for the gas-particle mixture has been obtained completely 

analytically by taking into account the continuous distribution of particle radii and 
the finite volume fraction of the particles. It has been proved that the effect of the 
continuous distribution of particle radii on the wave phenomena is introduced only 
through four integral quantities of A,  and B, multiplied by $,,(rp) r i  over all particle 
radii : Ape, &, Bp0 and BPI. This solution has been applied to the problem of acoustic 
reflection, transmission and absorption by the gas-particle screen. 
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The numerical results have shown that the acoustic response of the gas-particle 
screen depends strongly on the particle sizes. The need for detailed knowledge of the 
size distribution q5 ( r  ) is then inevitable for the precise prediction of the coefficients 
of reflection, transmission and absorption by the gas-particle screen. 

Appendix 

O P  

From (34), we can get 
Po - 1 €0 

p p  l-€, u ’  
- ___ - 

which yields, in conjunction with assumption (iv) of $2,  

since the condition 
O < E 0 < 1  

is always satisfied. Using these relations, it follows from the expressions for QPl and 
Cp2, which can be obtained by substituting (71) into (68), that 

Qp1 > 07 (A 4) 

where use has been made of (70). 

(76) as 
Obviously, the sign of Q is equal to that of a1a4 -a2a3, which can be obtained with 

l - € 0  1 - E o  

- v[yv282B;, + (1  + ueBp2) (1  + yusB,,)] (1 -q Q p p .  (A 6) 1 - E o  u 

Equations (A 2)-(A 5 ) ,  together with the fact that y is always greater than unity, 
imply that 

ala4-aza, > 0,  (A 7 )  

or, as was to be shown, 
Q > 0. 
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